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(57) ABSTRACT

Due to the ever expanding number of registers and new
instructions in modern microprocessor cores, the address
widths present in the instruction encoding continue to widen,
and fewer instruction opcodes are available, making it more
difficult to add new instructions to existing architectures
without resorting to inelegant tricks that have drawbacks such
as source destructive operations. The disclosed invention uti-
lizes specialized decode and address calculation hardware
that concatenates a fixed number of least significant bits of the
instruction address onto the most significant side of each
register address portion contained in the instruction, yielding
the full register address, instead of providing the full register
address widths for every register used in the instruction. This
frees up valuable opcode space for other instructions and
avoids compiler complexity. This aligns nicely with how
most loops are unrolled in assembly language, where inde-
pendent operations are near each other in memory.

4 Claims, 6 Drawing Sheets
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1
OPCODE SPACE MINIMIZING
ARCHITECTURE UTILIZING A LEAST
SIGNIFICANT PORTION OF AN
INSTRUCTION ADDRESS AS UPPER
REGISTER ADDRESS BITS

FIELD OF THE INVENTION

The invention is generally related to data processing, and in
particular to processor architectures and execution units
incorporated therein.

BACKGROUND OF THE INVENTION

The fundamental task of every computer processor is to
execute computer programs. How a processor handles this
task, and how computer programs must present themselves to
a processor for execution, are governed by both the instruc-
tion set architecture (ISA) and the microarchitecture of the
processor. An ISA is analogous to a programming model, and
relates principally to how instructions in a computer program
should be formatted in order to be properly decoded and
executed by a processor, although an ISA may also specify
other aspects of the processor, such as native data types,
registers, addressing modes, memory architecture, interrupt
and exception handling, and external 1/O. The microarchitec-
ture principally governs lower level details regarding how
instructions are decoded and executed, including the constitu-
ent parts of the processor (e.g., the types of execution units
such as fixed and floating point execution units) and how
these interconnect and interoperate to implement the proces-
sor’s architectural specification.

An ISA typically includes a specification of the format of
each type of instruction that is capable of being executed by a
particular processor design. Typically, an instruction will be
encoded to include an opcode that identifies the type of
instruction, as well as one or more operands that identify
input and/or output data to be processed by the instruction. In
many processor designs, for example Reduced Instruction Set
Computer (RISC) and other load-store designs, data is prin-
cipally manipulated within a set of general purpose registers
(GPR’s) (often referred to as a “register file), with load and
store instructions used to respectively retrieve input data into
GPR’s from memory and store result or output data from
GPR’s and back into memory. Thus, for a majority of the
instructions that manipulate data, the instructions specify one
or more input or source registers from which input data is
retrieved, and an output or destination register to which result
data is written.

Instructions are typically defined in an ISA to be a fixed
size, e.g., 32 bits or 64 bits in width. While multiple 32 or
64-bit values may be used to specify an instruction, the use of
multiple values is undesirable because the multiple values
take more time to propagate through the processor and sig-
nificantly increase design complexity. With these fixed
instruction widths, only a limited number of bits are available
for use as opcodes and operands.

Each unique instruction type conventionally requires a
unique opcode, so, in order to support a greater number of
instruction types (a continuing need in the industry), addi-
tional bits often must be allocated to the opcode portion of an
instruction architecture. In some instances, opcodes may be
broken into primary and secondary opcodes, with the primary
opcode defining an instruction type and the secondary opcode
defining a subtype for a particular instruction type; however,
even when primary and secondary opcodes are used, both
opcodes occupy bit positions in each instruction.
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Likewise, a continuing need exists for expanding the num-
ber of registers supported by an ISA, since improvements in
fabrication technology continue to enable greater numbers of
registers to be architected into an integrated circuit, and in
general performance improves as the number of registers
increases.

Each register requires a unique identifier as well, so as the
number of registers increases, the number of bit positions in
each instruction required to identify all supported registers
likewise increases.

As an example, consider a processor architecture that sup-
ports 32-bit instructions with 6-bit primary opcode fields, and
thus supports a total of 64 types, or classes of instructions. If,
for example, it is desirable to implement within this architec-
ture a class of instructions that identifies up to three source
registers and a separate destination register from a register file
ot 64 registers, each operand requires a 6-bit operand field. As
such, 6 bits are needed for the primary opcode, 18 bits are
needed for the source register addresses and 6 bits are needed
for the target register address, leaving only 2 bits for an
extended opcode, and allowing for only four possible instruc-
tions in this instruction class.

In most instances, however, more instruction types are
needed for an architecture to be useful. For instance, an
instruction class for performing floating point operations may
need instruction types that perform addition, subtraction,
multiplication, fused multiply-add operations, division,
exponentiation, trigonometric operations, comparison opera-
tions, and others.

Conventional attempts have been made to address these
limitations. For example, three-source operations may be
made destructive, meaning the target and one source address
would be implicitly equal, such that one address field in the
above example would not be needed, freeing up space for
additional extended opcodes. Destructive operations, how-
ever, are often not convenient for compilers and software
engineers, because often times an extra copy of the source
data that would be overwritten by the destructive operation
needs to be saved away in a temporary register, which can
have potential performance problems in addition to using
valuable temporary register space.

Therefore, a significant need continues to exist in the art for
amanner of increasing the number and complexity of instruc-
tions supported by an instruction set architecture.

SUMMARY OF THE INVENTION

The invention addresses these and other problems associ-
ated with the prior art by obtaining the most significant por-
tion of the full register address from register address calcula-
tion logic, which obtains the most significant portion of the
full register address from a least significant portion of the
current instruction’s instruction address, and concatenates
this portion with a portion of the address contained in the
instruction, yielding a full register address suitable for
addressing data in a large register file. The method of obtain-
ing the most significant portion of the register address from
the least significant bits of the instruction address is used as a
substitute for storing full register addresses in the instruction.
This allows independent instructions to be nestled between
dependent ones in the instruction stream without hampering
performance and also allowing for optimal secondary opcode
space in the instruction.

One major reason why instruction set architectures strive
for large numbers of registers is so that loops can be “un-
rolled” to minimize branch misprediction performance pen-
alties. The large numbers of registers are needed to do spills
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and fills of data without reusing the same register in a loop.
Consider the following example where a long Taylor series
approximation is computed for sin(x) with many iterations:

P X 7 9

sin(x)::x—ﬁ+§

KL

mrt

Wy

131 151

X X 15
_ﬂ+a_

# initially:

# f1, £2, 10 contain x

# 13, f4, 16, f8 contain 1.0
# {7 contains —1.0

loop: fmul 2, f1,f2  #fl contains x, initially f2 contains x also
fmul 2, f1,f2  # f2 now contains x raised to the desired exp
fadd f3,3,f6  # increment the counter, initially contains 1
fmul f4, 13,4 # f4 contains the running factorial, init 1
fadd 3, 13,6  # increment the counter
fmul f4, 13,4 # f4 contains the running factorial
fdiv 5, 16, f4  # £5 now has the reciprocal of the factorial
fmul 8, 17,18  # flip the sign appropriately
fmul 9, 15,12 # multiply the reciprocal with the x
component
fmadd {10, 9, # correct the sign and add to the sum in f10
8, f10
femp 3, end # compare counter (exponent) to end
blt loop # branch back to loop if f3 < end

After loop unrolling twice, the loop may be similar to the
below code listing, where registers {1 through f10 are used for
the most significant part of the approximation, and {11 thru
20 are used for the least significant (starts with the x13/13!
term), and they are summed together at the end.

# initially:

# f1, £2, 10 contain x

# 13, f4, 16, f8 contain 1.0
# {7 contains —1.0

# f1, £2, 10 contain x

# 13, f4, 16, f8 contain 1.0
# {7 contains —1.0

# end contains 5

loop: fmul 12, f1, 2 # 1 contains x, initially f2 contains x also

fmul f12, 111, f12 #

fmul 12, f1, 2 # 2 now contains x raised to the desired
exp

fmul f12, 111, f12 #

fadd 3, 13, 6 # increment the counter, initially contains
1

fadd 13,13, f16 #

fmul 4, 13, 4 # f4 contains the running factorial, init 1

fmul f14, 113, f14 #

fadd 3, 13, 6 # increment the counter

fadd 13,13, f16 #

fmul 4, 13, 4 # f4 contains the running factorial

fmul f14, 113, f14 #

fdiv 5, 16, f4 # £5 now has the reciprocal of the factorial

fdiv 15, f16, f14 #

fmul 8, {7, 18 # flip the sign appropriately

fmul f18, 117, f18 #
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-continued
fmul 9, 15,12 # multiply the reciprocal with the x
component
fmul f19, f15,f12 #
fmadd {10, 19, f8, # correct the sign and add to the sum
10 in f10
fmadd 20, f19, f18, # correct the sign and add to the sum
20 in £20
femp 3, end # compare counter (exponent) to end
blt loop # branch back to loop if f3 < end
fadd 10, £10, 20  # sum

Note that to minimize branch mispredict penalties and for
other performance reasons, this loop would be unrolled fur-
ther than 2 times typically, but for brevity’s sake the example
shown above is only unrolled two times. Note that to unroll
the loop 4 times, approximately 40 registers would be needed,
and this surpasses the limit of 32 registers for many architec-
tures. Notice also that the unrolled target registers and source
registers follow a predictable pattern and are interleaved,
where instructions calculating the most significant portion
(terms x thru x*!/11!) are on even lines, and the least signifi-
cant portion (terms x* /13! thrux?*/21") are on odd lines. This
is intended to avoid dependency stalls between instructions,
which hampers performance.

The disclosed invention avoids placing the upper address
bits of source and/or target register addresses directly in the
instruction itself, as that would use up valuable opcode space.
Instead, the upper, most significant address bits are taken
from the least significant bits of the address of the instruction.
Special instruction decode hardware decodes these special
instructions and concatenates a least significant subset of
instruction address bits onto the most significant portion of
the register address. In this particular implementation of the
invention, the least significant 2 bits of the instruction address
are concatenated onto the most significant portion of each
register address portion contained in the instruction. Instruc-
tion addresses are 64 bits in width in this implementation, and
numbered from most significant bit 0 to least significant bit
63. Full register addresses are 6 bits in width and numbered
from most significant bit 0 to least significant bit 5. In this
example, bits 60:61 are concatenated onto the most signifi-
cant side of each register address portion contained in the
instruction, such that bits 60:61 from the instruction address
become bits 0:1 of each full register address. Thus, the
example above is altered to be unrolled 4 times (only a portion
shown for brevity) note the instruction address on the left. The
bits of the instruction address that are concatenated with the
register addresses from the instruction are shown in bold.

Instruction

Address

bits (58:63) Instruction

0b000000: zfmul 2, {1, 2 # {1 contains x, initially f2 contains x also
0b000100: zfimul 34, 133, 34 # (in memory this looks like zfimul, £2, f1, £2)
0b001000: zfmul {66, 65, {66 # (in memory this looks like zfimul, £2, f1, £2)
0b001100: zfmul {98, 97, {98 # (in memory this looks like zfimul, £2, f1, £2)
0b010000: zfmul 2, {1, 2 # f2 now contains x raised to the desired exp
0b010100: zfimul 34, 133, 34 # (in memory this looks like zfimul, £2, f1, £2)
0b011000: zfmul {66, 65, {66 # (in memory this looks like zfimul, £2, f1, £2)
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-continued

Instruction
Address
bits (58:63) Instruction
0b011100: zfmul 98, 197, 98 # (in memory this looks like zfimul, £2, f1, £2)
0b100000: zfadd 3, 13, {6 # increment the counter, initially contains 1
0b100100: zfadd 135, 135, 38 # (in memory this looks like zfadd 3, 3, 6)
0b101000: zfadd 167, f67, £70 # (in memory this looks like zfadd 3, 3, 6)
0b101100: zfadd 99,199, f102  # (in memory this looks like zfadd 13, {3, {6)
0b110000: zfmul 4, {3, f4 # f4 contains the running factorial, init 1
0b110100: zfmul 36, {35, 36 # (in memory this looks like zfimul f4, {3, 4)
0b111000: zfmul {68, {67, {68 # (in memory this looks like zfimul f4, {3, 4)
0b111100: zfimul 100, 99, f100  # (in memory this looks like zfmul f4, 3, f4)
0b110100: zfaddb  f10, f10, f42 # final sum (instr zfaddb uses IA for B only)
0b111000:  zfaddb  f10, f10, {74 #
0b111000:  zfaddb  f10, f10, f106  #

Therefore, consistent with one aspect of the invention, a
computer system includes a register file configured to store a
target result operand and to retrieve a source operand both
addressed by register addresses, an execution unit for execut-
ing instructions, where the execution unit is configured to
receive the source operand from the register file and write the
target result operand into the register file. The computer sys-
tem also includes a register address calculation logic config-
ured to receive a current instruction address portion associ-
ated with a current instruction, a source register address
portion and a target register address portion, and to concat-
enate the current instruction address portion onto the source
register address portion and the target register address portion
to yield a full source register address corresponding to the
source operand and a full target register address correspond-
ing to the target operand. The register address calculation
logic is further configured to provide the full source register
address and the full target register address to the register file.
The computer system also includes an instruction decode
logic configured to decode the current instruction and provide
the current instruction address portion and the source and
target register address portions to the register address calcu-
lation logic.

Consistent with another aspect of the invention, a method is
provided for executing instructions in a processor, where, in
response to receiving an instruction that corresponds to an
instruction opcode that contains only a portion of the full
register address in lieu of full addresses, the addresses are
obtained by concatenating each individual address portion
provided in the instruction with a least significant address
portion obtained from the current instruction’s instruction
address to yield full register addresses. The full source and
target addresses are then provided to the register file such that
operand data can be read from the register file that is associ-
ated with the source addresses. This operand data is then used
to execute the instruction, and the resultant target data is
written into the register file entry associated with the full
target address.

These and other advantages and features, which character-
ize the invention, are set forth in the claims annexed hereto
and forming a further part hereof. However, for a better under-
standing of the invention, and of the advantages and objec-
tives attained through its use, reference should be made to the
drawings, and to the accompanying descriptive matter, in
which there is described exemplary embodiments of the
invention.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of exemplary automated com-
puting machinery including an exemplary computer useful in
data processing consistent with embodiments of the present
invention.

FIG. 2 is a block diagram illustrating in greater detail an
exemplary implementation of the processor in FIG. 1.

FIG. 3 is a block diagram illustrating an exemplary imple-
mentation of an auxiliary instruction issue and execution
logic consistent with the invention, and capable of being
implemented within the processor of FIG. 2.

FIG. 4 is a block diagram of an address calculation logic
consistent with the invention, and capable of being imple-
mented within the processor of FIG. 2.

FIG. 5 is a flow chart illustrating an exemplary sequence of
operations performed by the auxiliary instruction issue and
execution logic of FIG. 3 to implement register address cal-
culation using current instruction address consistent with the
invention.

FIG. 6 is an illustration of two instruction formats, the first
instruction format suitable for execution by a prior art com-
puting system, and the second suitable to be executed by an
AXU Auxiliary Execution unit consistent with the embodi-
ment shown in FIGS. 1-5.

DETAILED DESCRIPTION

Embodiments consistent with the invention utilize register
address calculation using current instruction addresses to
generate full register addresses suitable for usage by large
register files. A portion of the full address is obtained from the
instruction while the remainder of the full address is obtained
from the current instruction address by register address cal-
culation logic. The two portions are concatenated and sent to
the execution unit to begin execution.

The hereinafter described embodiments allow for much
greater opcode space in fixed instruction width architectures
by using register address offsets that occupy fewer bits than
the full source addresses, thereby freeing up more bits in the
instruction for opcode space.

Other modifications will become apparent to one of ordi-
nary skill in the art having the benefit of the instant disclosure.

Hardware and Software Environment

Now turning to the drawings, wherein like numbers denote
like parts throughout the several views, FIG. 1 illustrates
exemplary automated computing machinery including an
exemplary computer 10 useful in data processing consistent
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with embodiments of the present invention. Computer 10 of
FIG. 1 includes at least one computer processor 12 or ‘CPU’
as well as a random access memory 14 (‘RAM”), which is
connected through a high speed memory bus 16 and a bus
adapter 18 to processor 12 through a processor bus 34.

Stored in RAM 14 is an application 20, a module of user-
level computer program instructions for carrying out particu-
lar data processing tasks such as, for example, word process-
ing, spreadsheets, database operations, video gaming, stock
market simulations, graphics simulations, atomic quantum
process simulations, or other user-level applications. Also
stored in RAM 14 is an operating system 22. Operating sys-
tems useful in connection with embodiments of the invention
include UNIX™, Linux™, Microsoft Windows XPT™,
AIX™ IBM’s i5/0OS™, and others as will occur to those of
skill in the art. Operating system 22 and application 20 in the
example of FIG. 1 are shown in RAM 14, but many compo-
nents of such software typically are stored in non-volatile
memory also, e.g., on data storage such as a disk drive 24.

Computer 10 of FIG. 1 includes a disk drive adapter 38
coupled through an expansion bus 40 and bus adapter 18 to
processor 12 and other components of the computer 10. Disk
drive adapter 38 connects non-volatile data storage to the
computer 10 in the form of disk drive 24, and may be imple-
mented, for example, using Integrated Drive Electronics
(‘IDE’) adapters, Small Computer System Interface (‘SCSI”)
adapters, and others as will occur to those of skill in the art.
Non-volatile computer memory also may be implemented for
as an optical disk drive, electrically erasable programmable
read-only memory (so-called ‘EEPROM’ or ‘Flash’
memory), RAM drives, and so on, as will occur to those of
skill in the art.

Computer 10 also includes one or more input/output (‘I/
0O’) adapters 42, which implement user-oriented input/output
through, for example, software drivers and computer hard-
ware for controlling input and output to and from user input
devices 44 such as keyboards and mice. In addition, computer
10 includes a communications adapter 46 for data communi-
cations with a data communications network 50. Such data
communications may be carried out serially through RS-232
connections, through external buses such as a Universal
Serial Bus (‘USB’), through data communications networks
such as IP data communications networks, and in other ways
as will occur to those of skill in the art. Communications
adapter 46 implements the hardware level of data communi-
cations through which one computer sends data communica-
tions to another computer, directly or through a data commu-
nications network. Examples of communications adapter 46
suitable for use in computer 10 include but are not limited to
modems for wired dial-up communications, Ethernet (IEEE
802.3) adapters for wired data communications network com-
munications, and 802.11 adapters for wireless data commu-
nications network communications. Computer 10 also
includes a display adapter 32 which facilitates data commu-
nication between bus adapter 18 and a display device 30,
allowing application 20 to visually present output on display
device 30.

FIG. 2 next illustrates in detail one exemplary implemen-
tation of a processor 12 consistent with the invention, imple-
mented as a processing element partitioned into an instruction
unit (IU) 162, an execution unit (XU) 164 and an auxiliary
execution unit (AXU) 166. In the illustrated implementation,
1U 162 includes a plurality of instruction buffers (I Buffer)
168 that receive instructions from an L1 instruction cache
(ICACHE) 170. Each instruction buffer 168 is dedicated to
one of a plurality, e.g., four, symmetric multithreaded (SMT)
hardware threads. An effective-to-real translation unit
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(iERAT) 172 is coupled to iCACHE 170, and is used to
translate instruction fetch requests from a plurality of thread
fetch sequencers 174 into real addresses for retrieval of
instructions from lower order memory, through a bus inter-
face controller 108. Each thread fetch sequencer 174 is dedi-
cated to a particular hardware thread, and is used to ensure
that instructions to be executed by the associated thread is
fetched into the iCACHE 170 for dispatch to the appropriate
execution unit. As also shown in FIG. 2, instructions fetched
into instruction buffer 168 may also be monitored by branch
prediction logic 176, which provides hints to each thread
fetch sequencer 174 to minimize instruction cache misses
resulting from branches in executing threads.

1U 162 also includes a plurality of issue logic blocks 178
and is configured to resolve dependencies and control the
issue of instructions from instruction buffer 168 to XU 164. In
addition, in the illustrated embodiment, a plurality of separate
auxiliary instruction issue logic blocks 180 is provided in
AXU 166, thus enabling separate instructions to be concur-
rently issued by different threads to XU 164 and AXU 166. In
an alternative embodiment, (not illustrated) auxiliary instruc-
tion issue logic 180 may be disposed in IU 162, or may be
omitted in its entirety, such that issue logic 178 issues instruc-
tions to AXU 166.

XU 164 is implemented as a fixed point execution unit,
including a general purpose register (GPR) 182 and a special
purpose register (SPR) 198 both coupled to fixed point logic
184, a branch logic 186 and a load/store logic 188. Load/store
logic 188 is further coupled to an [.1 data cache (dCACHE)
190, with effective to real translation provided by a dERAT
logic 192. XU 164 may be configured to implement practi-
cally any instruction set, e.g., all or a portion of a 32b or 64b
Power™ Architecture instruction set.

AXU 166 operates as an auxiliary execution unit including
the auxiliary instruction issue logic 180 along with one or
more execution blocks 194. AXU 166 may include any num-
ber of execution blocks, and may implement practically any
type of execution unit, e.g., a floating point unit, or one or
more specialized execution units such as encryption/decryp-
tion units, generic coprocessors, cryptographic processing
units, vector processing units, graphics processing units,
XML processing units, etc. In the illustrated embodiment,
AXU 166 includes high speed auxiliary interface 196, to
facilitate high speed communication between AXU 166 and
XU 164, e.g., to support direct moves between AXU register
contents and XU register contents and other high speed com-
munication between execution units.

Register Address Calculation Logic in an Issue Unit

FIG. 3 illustrates in further detail an exemplary AXU 166
suitable for implementation inside of processor 12 in FIG. 2.
AXU 166 is configured with auxiliary instruction issue logic
180, which is configured to select fair issuance of instructions
from multiple threads using an issue select logic 208, which
in turn issues instructions from the selected thread to an
auxiliary execution block 194. AXU 166 is also configured to
decode instructions for each thread with an instruction
decode logic 202. Instruction decode logic 202 decodes
instructions from its associated thread to determine if the
current instruction supports register address calculation using
current instruction address consistent with embodiments of
the invention. In addition, instruction decode logic 202
obtains one or more address portions from the instruction and
provides them to address calculation logic 300. Instruction
decode logic 202 also passes along a portion of the instruction
address associated with that thread’s current instruction.
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Address calculation logic 300 is configured to generate full
register addresses by concatenating the least significant bits
of the current instruction’s address onto the most significant
portion of each register address portion obtained from the
instruction, and provide the full addresses and the instruction
to dependency logic 204. Dependency logic 204 is configured
to resolve dependencies between instructions by stalling
dependent instructions for the appropriate number of cycles,
and pass the instruction and associated full addresses to issue
select logic 208.

Issue selectlogic 208 is configured to select fair issuance of
instructions from available threads in the design, and issue
instructions and full register addresses to auxiliary execution
block 194. Auxiliary execution block 194 includes a register
file 210 coupled to an execution unit 214. Register file 210
includes an array of registers, each of which are accessed by
aunique address. For example, register file 210 may be imple-
mented to support 64 registers, each accessed by a unique full
6-bit address. It will be appreciated that different numbers of
registers may be supported in different embodiments.

Auxiliary execution block 194 is configured to obtain the
full addresses from issue select logic 208, and provide them to
register file 210, which in turn reads operand data associated
with the full address, and provides the operand data to execu-
tion unit 214. Execution unit 214 may be implemented as a
number of different types of execution units, e.g., floating
point units, fixed point units, or specialized execution units
such as graphics processing units, encryption/decryption
units, coprocessors, XML processing units, etc, and still
remain within the scope and spirit of the present invention.

Execution unit 214 performs some operation on this oper-
and data e.g., addition, subtraction, division, etc, depending
on the type of instruction issued from issue select logic 208.
Executionunit 214 provides the resultant target data 212 from
the operation to register file 210, where it is stored internally
atalocation associated with a full address obtained from issue
select logic 208.

In a multithreaded design consistent with the invention,
one group 200 of instruction decode logic 202, address cal-
culation logic 300, and dependency logic 204 exists for each
thread in the design. Alternatively, other embodiments may
be implemented in a single threaded design, where only a
single thread is issued to one group 200 of instruction decode
logic 202, address calculation logic 300, and dependency
logic 204, and only one group 200 exists in the design.

FIG. 4 illustrates in further detail address calculation logic
300, previously shown in FIG. 3. This particular embodiment
of'address calculation logic 300 is designed to obtain the two
least significant bits of the current instruction’s instruction
address (numbered 60:61) and concatenate those two bits
onto the most significant portion of each register address
portion (each numbered 2:5) contained in the current instruc-
tion. In the illustrated embodiment, the register address por-
tions contained in the instruction are 4 bits each, and when
each ofthese address portions are concatenated with the least
2 significant bits of the instruction address, this yields a 6-bit
full address denoted as bits 0:5 which are suitable for address-
ing the 64 registers in the register file.

In the illustrated embodiment, four register address por-
tions are obtained from the instruction. The instruction con-
tains target address portion TA(2:5), and three source register
address portions named AA(2:5), BA(2:5) and CA(2:5). Bits
60:61 of the instruction address are sent to multiplexers
302A, 302B, 302C and 302D. These multiplexers are config-
ured to select instruction address 60:61 to be passed to each
multiplexers output if the opcode valid from instruction
decode logic 202 is 1, indicating that the current instruction is
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an instruction that requires the least significant portion of the
instruction address to be concatenated with address portions
from the instruction to yield full register addresses. If the
opcode valid is 0, “00” is passed to the output of multiplexers
302A, 302B, 302C and 302D.

The outputs of multiplexers 302A, 302B, 302C and 302D
are then concatenated onto the most significant end of register
address portions TA(2:5), AA(2:5), BA(2:5) and CA(2:5),
respectively. This yields full register addresses TA(0:5),
AA(0:5), BA(0:5), and CA(0:5) which are sent to dependency
logic 204.

FIG. 5 illustrates a method 400 outlining a sequence of
operations performed by auxiliary execution unit 166 when
processing an instruction from an instruction stream, and
supporting register address calculation using the current
instruction address consistent with the invention. With this
sequence of operations, the instruction is received in block
410. Control then passes to block 420, where a determination
is made as to whether the instruction type of the incoming
instruction is of the type that contains any address portions in
place of full register addresses, as supported by an execution
unit supporting register address calculation using the current
instruction address consistent with the invention. If not, con-
trol passes to block 440, where the register addresses are
generated normally. Control then passes to block 450 where
execution of the instruction is completed, and finally control
passes back to block 410 to receive the next incoming instruc-
tion in the instruction stream.

If a determination is made in block 420 that the current
instruction is of the type that contains address portions in lieu
of full addresses for use in address calculation using the
current instruction address consistent with the invention, then
control passes to block 430, where a least significant portion
of the current instruction address is concatenated onto the
most significant end of each register address portion con-
tained in the instruction, yielding full register addresses,
which are then used to read entries from the register file and
start executing the instruction. Control then passes to block
450, where the execution of the instruction is completed, and
control passes back to block 410 to receive the next incoming
instruction in the instruction stream.

FIG. 6 illustrates at 500 an exemplary instruction format
able to be executed by AXU 166. Instruction format 500
contains 32 bits where the bits include an instruction opcode
501 consisting of 6 bits, a 6-bit target address 502, three 6-bit
source addresses 504 A, 504B and 504C, and a 2-bit second-
ary opcode 506. As discussed previously, the 2-bit opcode
506 limits the instruction type to only 4 subtypes of opera-
tions, yet typically many more are needed.

FIG. 6 also illustrates at 600 an exemplary instruction
format supporting register address calculation using the cur-
rent instruction address and able to be executed by AXU 166
and method 400 consistent with the invention. Instruction
format 600 contains 32 bits where the bits include an instruc-
tion opcode 601 consisting of 6 bits, a 6-bit target address
602, and three source register portions 604A, 6048, and 604C
consisting of 4 bits each. In addition, instruction format 600
contains secondary opcode 606 which is 8 bits. The wider
secondary opcode 606 allows for a far greater number of
instruction subtypes.

The 4-bit source address portions 604A, 604B and 604C
may each be used to be supplied as address portions to the
address calculation logic 300 in FIG. 4. In this manner, the
source address portions from the instruction may be used to
produce full register addresses by concatenating each register
address portion from the instruction with the least significant
bits from the instruction address.



US 9,075,599 B2

11

Instruction format 600 may contain any number and com-
bination of source address portions versus full source
addresses and not depart from the scope of the invention. For
instance, in place of source portion 604A a full 6-bit register
address may be used, reducing the number of available bits in
the secondary opcode 606 to 6 bits. Opcodes such as opcode
601 and secondary opcode 606 in the instruction specity
which source operands in the instruction are referenced by
register addresses directly and which require address calcu-
lation by address calculation logic 300. It should be also bet
noted that the fixed instruction width may be something other
than 32 bits, for instance 64 bits, and not depart from the
scope or spirit of the invention

Embodiments of the present invention may be imple-
mented within the hardware and software environment
described above in FIGS. 1-6. However, it will be appreciated
by one of ordinary skill in the art having the benefit of the
instant disclosure that the invention may be implemented in a
multitude of different environments, and that other modifica-
tions may be made to the aforementioned hardware and soft-
ware embodiment without departing from the spirit and scope
of the invention. As such, the invention is not limited to the
particular hardware and software environment disclosed
herein.

Other modifications will be apparent to one of ordinary
skill in the art having the benefit of the instant disclosure.
Therefore, the invention lies in the claims hereinafter
appended.

What is claimed is:

1. A computer system, comprising:

aregister file configured to store a target result operand and
to retrieve a source operand both addressed by register
addresses;

an execution unit for executing instructions, the execution
unit configured to receive the source operand from the
register file and write the target result operand into the
register file;

register address calculation logic configured to receive a
current instruction address portion of a current instruc-
tion address associated with a current instruction, a
source register address portion and a target register
address portion, and to concatenate the current instruc-
tion address portion onto the source register address
portion and the target register address portion to yield a
full source register address corresponding to the source
operand and a full target register address corresponding
to the target result operand, and to provide the full source
register address and the full target register address to the
register file; and

instruction decode logic configured to decode the current
instruction and provide the current instruction address
portion and the source and target register address por-
tions to the register address calculation logic;

wherein the instruction decode logic is configured to pro-
vide an opcode valid indication to the register address
calculation logic, the opcode valid indication indicating
that the current instruction requires the current instruc-
tion address portion to be concatenated onto the source
and target register address portions to yield full register
addresses,

wherein the register address calculation logic is configured
to receive the opcode valid indication from the instruc-
tion decode logic, and provide the opcode valid indica-
tion to a first multiplexer, the first multiplexer being
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functionally coupled ata first input to a logic value “00”,
and at a second input to the two least significant bits of
the current instruction address, wherein the output ofthe
first multiplexer is concatenated onto the most signifi-
cant end of the target register address portion, yielding
the full target register address, and

wherein the first multiplexer is further configured to pass

the logic value “00” to its output when the opcode valid
indication is false, and configured to pass the two least
significant bits of the current instruction address to its
output when the opcode valid indication is true.

2. The computer system of claim 1, wherein the register
address calculation logic is configured to concatenate the
current instruction address portion onto the most significant
end of the source register address portion.

3. The computer system of claim 2, wherein the source and
target register address portions are each 4 bits.

4. A computer system, comprising:

aregister file configured to store a target result operand and

to retrieve a source operand both addressed by register
addresses;

an execution unit for executing instructions, the execution

unit configured to receive the source operand from the
register file and write the target result operand into the
register file;

register address calculation logic configured to receive a

current instruction address portion of a current instruc-
tion address associated with a current instruction, a
source register address portion and a target register
address portion, and to concatenate the current instruc-
tion address portion onto the source register address
portion and the target register address portion to yield a
full source register address corresponding to the source
operand and a full target register address corresponding
to the target result operand, and to provide the full source
register address and the full target register address to the
register file; and

instruction decode logic configured to decode the current

instruction and provide the current instruction address
portion and the source and target register address por-
tions to the register address calculation logic;

wherein the instruction decode logic is configured to pro-

vide an opcode valid indication to the register address
calculation logic, the opcode valid indication indicating
that the current instruction requires the current instruc-
tion address portion to be concatenated onto the source
and target register address portions to yield full register
addresses,

wherein the register address calculation logic is configured

to receive the opcode valid indication from the instruc-
tion decode logic, and provide the opcode valid indica-
tion to a first multiplexer, the first multiplexer being
functionally coupled ata first input to a logic value “00”,
and at a second input to the two least significant bits of
the current instruction address, wherein the output ofthe
first multiplexer is concatenated onto the most signifi-
cant end of the source register address portion, yielding
the full source register address, and

wherein the first multiplexer is further configured to pass

the logic value “00” to its output when the opcode valid
indication is false, and configured to pass the two least
significant bits of the current instruction address to its
output when the opcode valid indication is true.
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